

PRESENTER(S)

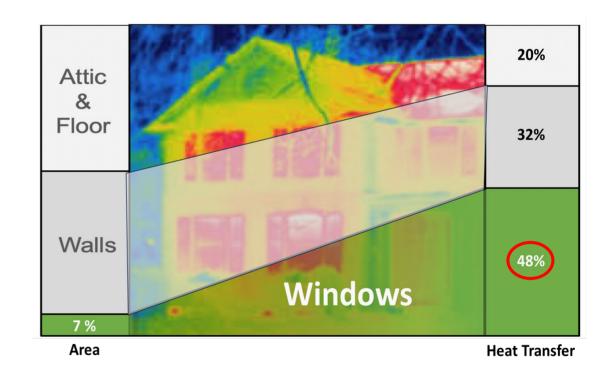
Katherine Cort
Senior Research Economist
Pacific Northwest National Laboratory (PNNL)

Steve SylvestreInitiative Manager, High-Performance Windows
Center for Energy and Environment

Thomas Culp, PhDPresident
Birch Point Consulting LLC

LEARNING OBJECTIVES

At the conclusion of this session, participants will:

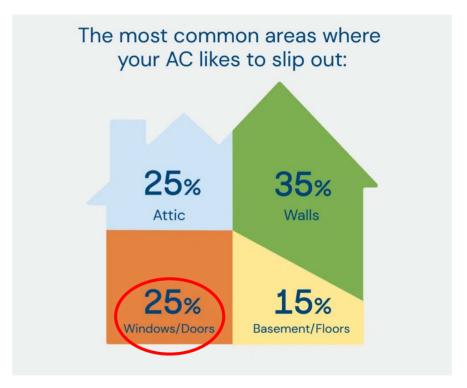

- Discover a non-invasive low-cost easy-to-install retrofit you can upsell to customers or add to your utility line up with federal incentives
- Learn about the benefits of modern storm windows as an effective solution you can offer to cost-conscious customers to improve window performance, reduce comfort complaints, cut energy bills, provide sound mitigation, keep out smoke and pollen, and improve resiliency
- Understand the research, ratings, and resources that can give you the confidence to recommend this cost-effective measure to your customers

Wouldn't it be great if there were more cost-effective ways to improve the building envelope?

WHY WINDOWS?

Windows make up ~7% of envelope area, but account for nearly half the thermal transfers through the envelope.

Based on Berkeley Lab Window heat transfer analysis for IECC 2021 prototype building.


WHY FOCUS ON AIR SEALING WINDOWS?

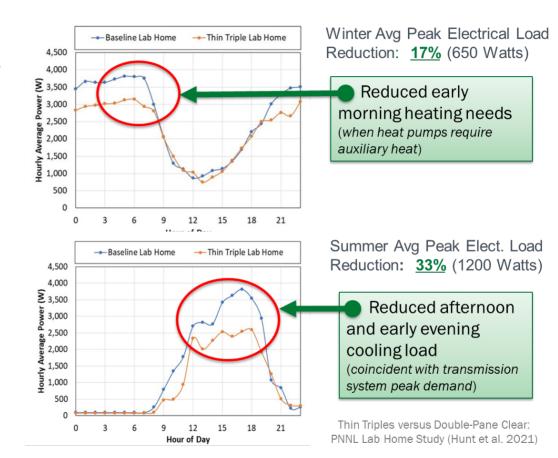
Reduces...

- Energy Bills
- Draftiness
- Outdoor Noise
- Allergens, dust, smoke

Improves...

- Occupant Comfort
- Temperature and Humidity Control
- Indoor Air Quality

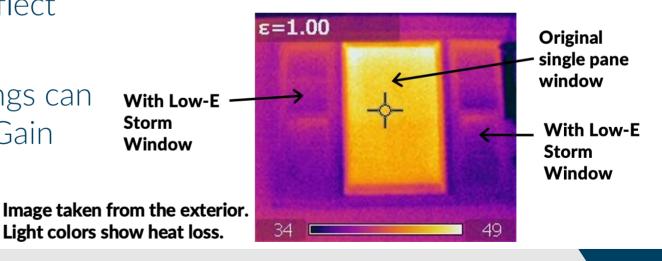
Source: CEMC (cemc.org)



BETTER WINDOWS ENABLE ELECTRIFICATION EFFORTS

Better window performance and reduced leakage helps achieve...

- Energy Savings/Carbon Reduction
- Peak Load Reductions
- Improved Comfort
- HVAC Electrification
- Energy Equity and Resilience Goals



HOW STORM WINDOWS CAN BE A SOLUTION

- Air Seals Primary Window
- Creates "Dead Air Space" to improve thermal insulating performance
- Low-e Glass can Reflect Radiant Heat
- Solar Control Coatings can Reduce Solar Heat Gain

MODERN STORM WINDOWS

Your grandmother's traditional seasonal storm window

Aluminum-framed self-storing storm window and screen

High-performance operable low-e exterior storm window

Operable low-e interior storm window

Modern Low-E coatings

Added comfort

Operable and fixed models

Year-round energy savings Reduce home air leakage Reduce outdoor noise

Aesthetically pleasing

THE MODERN STORM WINDOW SOLUTION

Xcel Energy®

- Cost ~1/3 of the cost of full window replacement
- Insulation and air sealing measure
- Similar energy savings to full window replacement
- Options with low-e glass, films, and acrylic panels

- Aesthetically pleasing
- Operable or fixed
- Interior or Exterior
- Improved comfort and acoustics
- Permanent year-round installation

Images courtesy of Indow, Alpen, Quantapanel, and Larson.

SIMPLE INSTALLATION

Straightforward, minimally invasive installation requires only a measuring tape, caulk, and screwdriver

Weep holes on exterior panels allow any water or condensation buildup to drain

Interior panels are measured to fit into window opening, mounted up to a blind stop

DOE STORM WINDOW FIELD STUDIES

2012-2013 **Philadelphia Multi-Family** field study (DOE, NAHB, QuantaPanel)

- 2 large 3-story buildings (101 apartments)
- Replaced old clear storm windows over single pane with new low-e storms
- 20% heating and 9% cooling energy use reduction
- Apartment air leakage reduced by 10%

2003-2006 **Chicago** field study

(DOE, HUD, LBNL)

- 6 weatherization homes with singlepane windows
- Reduced heating load by 21%
- Payback of 4.5 years
- Home air leakage reduced by 6-8% (15 cfm₅₀ reduction per window)

2011-2013 **Atlanta** field study (DOE, Larson, QuantaPanel)

- 10 older single-family homes with singlepane windows
- ~15% heating savings,
 2-30% cooling savings
- Home air leakage reduced by 17% (3.7 cfm₅₀)

2014-2015 Lab Home field test of interior and exterior panels on PNNL **Richland**, **WA** campus (DOE, PNNL, NEEA, BPA, Larson, QuantaPanel)

- Manufactured homes with metal-framed doublepane clear glass windows
- 11% heating and 8% cooling energy use reduction with application of low-e panels

MISSION: LEAVE NO POOR-PERFORMING WINDOW BEHIND

Affordable Window Retrofit Campaign

https://www.energy.gov/

A collaborative initiative to accelerate the adoption of modern, high-efficiency window attachments, delivering affordable energy savings and comfort to home occupants.

MINNEAPOLIS STORM WINDOW PILOT

MINNEAPOLIS CASE STUDY

Internal and external storm windows were assessed at several sites, showing notable air leakage improvements (10-20%)

BLOWER DOOR TESTING

- Measure of a home's leakiness
- Membrane with blower in front doorway
- Air blown out to a static pressure of 50 Pascals
- airflow logged in cubic feet per minute (CFM50)

STORM WINDOW RETROFIT OPTIONS

Exterior Storm Windows

Operable or fixed exterior storm window (low-e or clear glass)

Interior Secondary Window Panels

Operable low-e interior panel

Interior acrylic panel with compression weatherstripping (fixed, but removable)

SINGLE-FAMILY INTERIOR STORM INSERT (Acrylic)

Home Characteristics:

- Home Size: 3800 sq. ft.
- Single-Family
- Glazed Area: 341 sq. ft.
- Window Count: 25

SINGLE-FAMILY INTERIOR STORM INSERT (ACRYLIC)

Air Leakage Improvement:

- Whole-building CFM50: **18.6%**
- Per window: 38 CFM50
- Per glazed sq. ft.: 2.8 CFM50

SINGLE-FAMILY EXTERIOR STORM WINDOW

Home Characteristics:

- Home Size: 3200 sq. ft.
- Single-Family
- Glazed Area: 268 sq. ft.
- Window Count: 31

SINGLE-FAMILY EXTERIOR STORM WINDOW

Air Leakage Improvement:

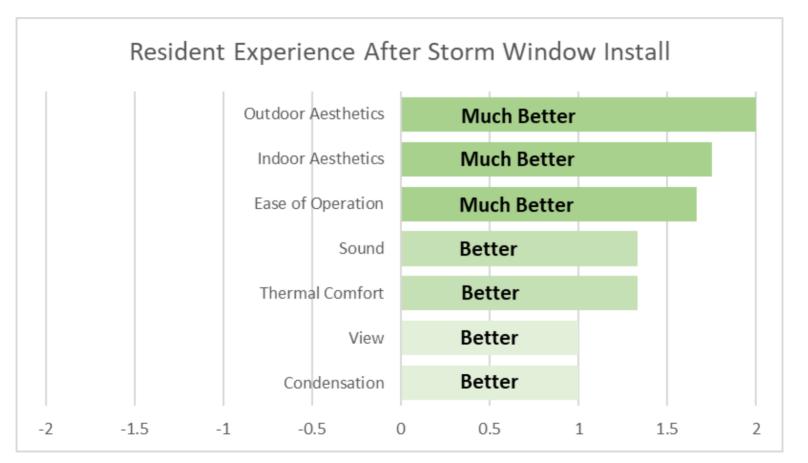
- Whole-building CFM50: **9.8%**
- Per window: 11 CFM50
- Per glazed sq. ft.: **1.2 CFM50**

MULTI-FAMILY #1 EXTERIOR STORM WINDOW (LOW-E)

Home Characteristics:

- Home Size: 4300 sq. ft.
- Units: 4-plex
- Glazed Area: 602 sq. ft.
- Window Count: 55

MULTI-FAMILY #1 EXTERIOR STORM WINDOW (LOW-E)


Air Leakage Improvement:

- Whole-building CFM50: **18.9%**
- Per window: 27 CFM50
- Per glazed sq. ft.: 2.5 CFM50

TENANT FEEDBACK

MULTI-FAMILY #2 EXTERIOR STORM WINDOW (LOW-E)

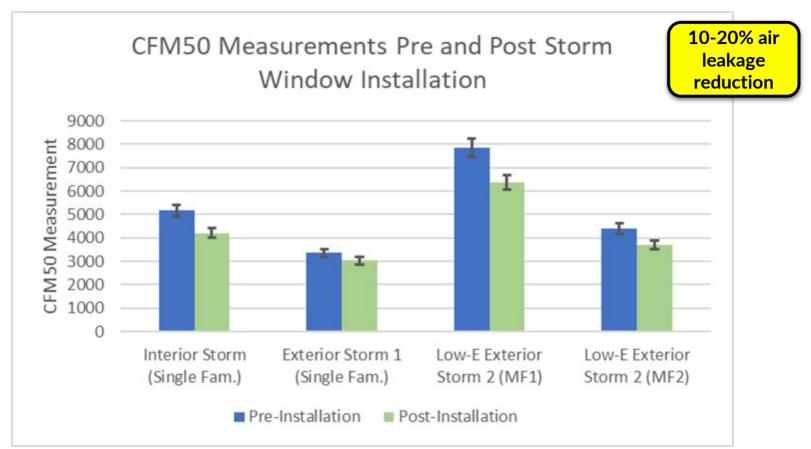
Home Characteristics:

- Home Size: 1900 sq. ft.
- Units: Duplex
- Glazed Area: 259 sq. ft.
- Window Count: 29

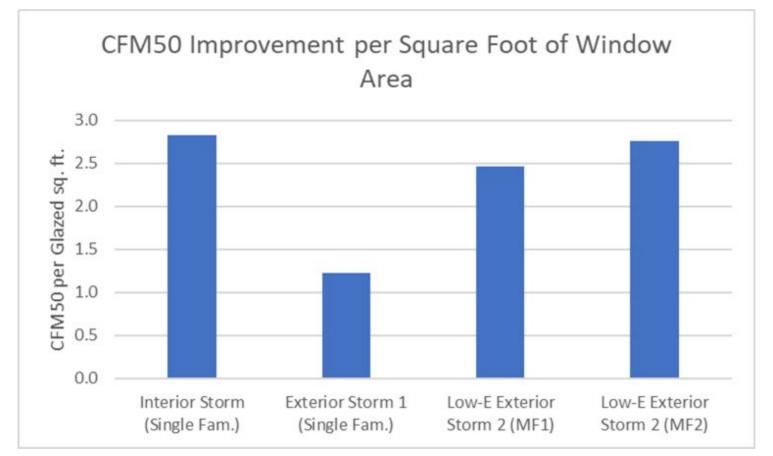

MULTI-FAMILY #2 EXTERIOR STORM WINDOW (LOW-E)

Air Leakage Improvement:

Whole-building CFM50: 16.2%


• Per window: 25 CFM50

• Per glazed sq. ft.: 2.8 CFM50


MINNEAPOLIS STORM WINDOW PILOT RESULTS

MINNEAPOLIS STORM WINDOW PILOT RESULTS

Programs, Initiatives, Ratings, and Incentives

APPLICATION - WEATHERIZATION

- 2009: Ability to include low-E storm windows added to NFAT/Weatherization Assistant software
- 2010: With DOE support, low-E storm windows added to Pennsylvania's Weatherization Measure Priority List for singlefamily homes
 - NEAT analysis for 37 home types in 4 cities
 - SIR 1.4-2.2 over single pane windows
 - SIR 1.3-2.1 over metal-framed dual pane windows
 - SIR much higher when using propane fuel

COST-EFFECTIVENESS - WEATHERIZATION

NEAT / Weatherization Assistant analysis in 22 cities across all 8 climate zones.

Low-F storm windows are cost-effective in zones 3-8 with SIR 1.2-3.2 when installed over single-pane windows and double-pane (clear) metal-framed windows.

SAMPLE NEAT RESULTS

Pittsburg PA

- Wood frame house with vented crawl space
- R11 floor, R11 wall, R19 attic
- Single-pane wood windows

SIR changes based on climate and local fuel prices, but order is roughly the same for this particular model house.

Annual Energy and Cost Savings

Index	Recommended	Components	Heati	ng	Cool	ing	BaseL	oad	Total
	Measure		(MMBtu)	(\$)	(kWh)	(\$)	(kWh)	(S)	(MMBtu)
1	Infiltration Redctn		11.2	134	-20	-3	0	0	11.1
2	Low Flow Showerheads		0.0	0	0	0	836	34	2.9
3	DWH Pipe Insulation		0.0	0	0	0	246	10	0.8
4	Lighting Retrofits	LT1,LT2,LT3,LT4	0.0	0	0	0	2169	278	7.4
5	Smart Thermostat		2.6	32	0	0	0	0	2.6
6	DWH Tank Insulation		0.0	0	0	0	260	11	0.9
7	Storm Windows	WD9,WD3,WD5,WD1	13.5	162	38	5	0	0	13.6
8	Attic Ins. R-11	A1	3.0	36	16	2	0	0	3.1
9	A/C Tuneup	AC1	0.0	0	578	74	0	0	2.0
10	IID	HS1	2.8	33	0	0	0	0	2.8

Energy Saving Measure Economics

Index	Recommended Measure	Components	Measure Savings (\$/yr)	Measure Cost (\$)	Measure SIR	Cumulative Cost (\$)	Cumulative SIR
1	Infiltration Redctn		131	150	7.4	150	7.4
2	Low Flow Showerheads		34	40	10.4	190	8.0
3	DWH Pipe Insulation		10	15	7.2	205	7.9
4	Lighting Retrofits	LT1,LT2,LT3,LT4	278	194	7.1	399	7.5
5	Smart Thermostat		32	75	5.1	474	7.1
6	DWH Tank Insulation		11	40	2.8	514	6.8
7	Storm Windows	WD9,WD3,WD5, WD1	167	1386	1.9	1899	3.2
8	Attic Ins. R-11	A1	38	330	1.8	2229	3.0
9	A/C Tuneup	AC1	74	125	1.7	2354	2.9
10	IID	HS1	33	225	1.2	2579	2.8

Modeling storm windows in NEAT

We can provide more details separately, but some hints:

- Don't confuse low-e storm windows with the "Low-E windows" or "Window replacement" measures, which have very different cost and SIR.
- Use "storm windows" measure, but for low-e storm windows, modify it under the Setup Library to have emittance = 0.16.
- Under Library Measures, make storm windows active, and enter the lifetime as 20 years.
- Air leakage reductions described earlier are not explicitly assigned to storm windows, but will hopefully be updated in future versions.
- For other software programs, preferably use ratings from the Attachments Energy Rating Council (AERC) https://aercenergyrating.org/product-search, or alternatively use representative "typical" values in PNNL report #24444

MANUFACTURED HOMES

- Modeled Low-E Storm Windows in Manufactured Home Energy Audit (MHEA) to analyze:
 - Cost-effectiveness by savings-to-investment ratio (SIR)
 - Site energy savings
 - Utility bill savings
- Gain a better understanding of MHEA
 - Are default storm window parameters reflective of modern technology?
 - How difficult is it to model low-e storm windows?
 - How is window infiltration or air leakage reduction modeled?

^{*} Publication Pending

MANUFACTURED HOMES

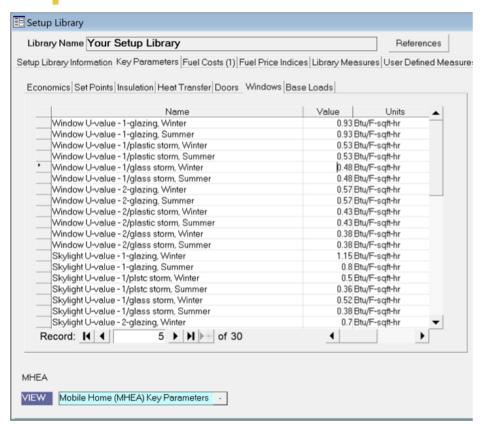
Low-E Storm Windows: Savings-to-Investment Ratio (SIR)

	Climate Zone	City, State	Primary Window			
HVAC			Single-Pane, Wood- or	Double-Pane, Wood-	Double-Pane, Metal-	
			Vinyl- Frame	or Vinyl- Frame	Frame	
	7	Duluth, MN	3.2	1.3	1.6	
Heat Pump	6A	Burlington, VT	3.5	1.5	1.8	
14 SEER	5A	Boston, MA	2.2	1	1.1	
8.2 HSPF	4C	Seattle, WA	0.7	0.3	0.4	
	3A	Atlanta, GA	0.6	0.2	0.3	
G 4 146/	7	Duluth, MN	5.6	2.4	2.7	
Central AC/	6A	Burlington, VT	6.4	2.8	3.2	
Propane Furnace	5A	Boston, MA	4.7	2	2.4	
13 SEER	4C	Seattle, WA	3.1	1.2	1.4	
80% AFUE	3A	Atlanta, GA	2.0	0.8	1.0	

^{*} Includes heating and cooling energy savings

MANUFACTURED HOMES

Low-E Storm Windows: Heating Utility Bill Savings


	Climate Zone	City, State	Primary Window			
HVAC			Single-Pane, Wood- or	Double-Pane, Wood-	Double-Pane, Metal-	
			Vinyl- Frame	or Vinyl- Frame	Frame	
	7	Duluth, MN	\$288	\$128	\$146	
Heat Pump	6A	Burlington, VT	\$364	\$157	\$180	
14 SEER	5A	Boston, MA	\$246	\$108	\$124	
8.2 HSPF	4C	Seattle, WA	\$77	\$30	\$35	
	3A	Atlanta, GA	\$54	\$22	\$26	
C 4 14C/	7	Duluth, MN	\$417	\$185	\$211	
Central AC/	6A	Burlington, VT	\$467	\$202	\$232	
Propane Furnace 13 SEER	5A	Boston, MA	\$354	\$159	\$181	
80% AFUE	4C	Seattle, WA	\$227	\$92	\$106	
0070 AFUE	3A	Atlanta, GA	\$143	\$61	\$70	

^{*} Includes heating utility bill savings only

AUDIT TOOL OBSERVATIONS

Screenshot from Weatherization Assistant 8.9.0.5

No Low-E Storm Window Measure

- Plastic and clear glass storm windows only
- Needs updated performance, cost, and lifetime values

Modifications to MHEA setup library necessary

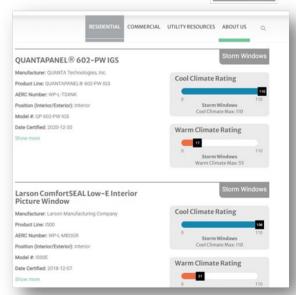
- U-Values (Btu/°F-sqft-hr)
 - Single pane w/glass storm 0.48 to 0.36
 - Double pane w/glass storm 0.38 to 0.29-0.33*
- No input for Solar Heat Gain Coefficient
- * Depending on frame material (metal or wood/vinyl)

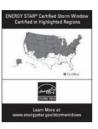
Where get Product Info?

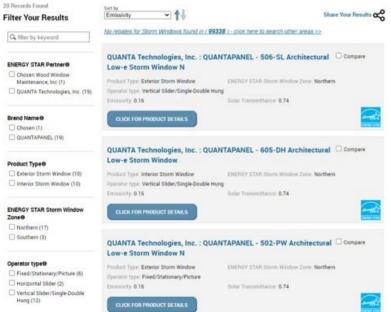
EPA ENERGY STAR® program for exterior and interior storm windows

https://www.energystar.gov/productfinder /product/certified-storm-windows/

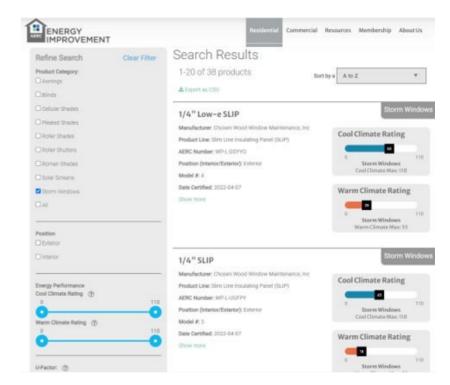
Attachments Energy Rating Council (AERC) certification program for storm windows and commercial secondary windows.


https://aercenergyrating.org/product-search/





Energy-Rated Products



EXISTING BUILDINGS - BUILDING PERFORMANCE STANDARDS

New local action to address climate change by addressing existing buildings.

- Energy Disclosure Laws
- Building Performance Standards limits on existing building energy use or emissions

Building Performance Standards have been enacted in:

- New York City (carbon limits starting 2024)
- St. Louis (energy use limits starting 2025)
- Boston (carbon limits starting 2025)
- Washington State (energy use limits starting 2026)
- District of Columbia (energy use limits starting 2026)
- Colorado (limits still in development, targeting 2025)

Fines start 2025-2026 ... but building owners have already started planning

Large incentive to upgrade existing buildings, including envelope & windows!

EXISTING BUILDINGS: BUILDING PERFORMANCE STANDARDS

- BPS expanding rapidly –
 every location on the map has
 joined the National BPS
 Coalition and committed to
 passing a building performance
 policy this year.
- Key opportunity for use of Low-E storm windows and panels to cost-effectively upgrade existing buildings.

The State of Building Performance Standards (BPS) in the U.S.

Members of the National BPS Coalition as of December 2023

ENERGY STAR Windows (V7)

Version 6

Climate Zone	U-Factor	SHGC		
Northern	≤ 0.27	Any	Prescriptive	
	= 0.28	≥ 0.32	Fautoni	
	= 0.29	≥ 0.37	Equivalent Energy Performance	
	= 0.30	≥ 0.42		
North- Central	≤ 0.30	≤ 0.40		
South- Central	≤ 0.30	≤ 0.25		
Southern	≤ 0.40	≤ 0.25		

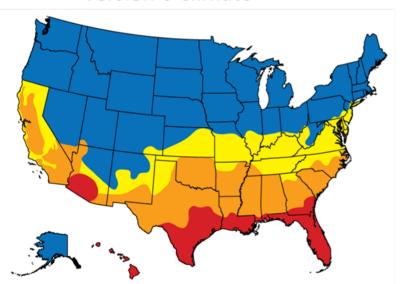
Version 7

Effective October 20, 2023!

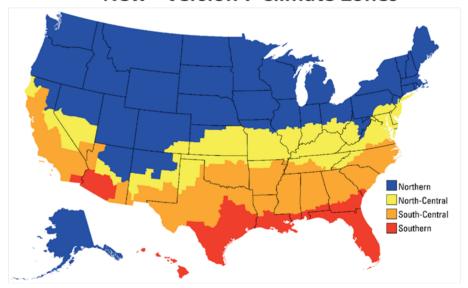
Climate Zone	U-Factor¹	SHGC ²		
Northern	≤ 0.22	≥ 0.17	Prescriptive	
	= 0.23	≥ 0.35		
	= 0.24	≥ 0.35	Equivalent Energy Performance	
	= 0.25	≥ 0.40		
	= 0.26	≥ 0.40		
North- Central	≤ 0.25	≤ 0.40		
South- Central	≤ 0.28	≤ 0.23		
Southern	≤ 0.32	≤ 0.23		

Air Leakage for windows ≤ 0.3 cfm/ft²

¹ Btu/h ft2.°F


² Solar Heat Gain Coefficient

ENERGY STAR Climate Zone Map


Final Version 7 Climate Zone Map

Note: EPA has developed a web-based tool to identify your climate zone

Version 6 Climate

New - Version 7 Climate Zones

Zone changes based on IECC 2021 - with adjusted zone islands

7

MINNESOTA-SPECIFIC UTILITY WINDOW REBATES

New MN rebates in 2024!

Utility	Rebate Requirements	Application	Rebate Amount	Туре
	ENERGY STAR v.7 windows, ENERGY STAR <mark>storm windows</mark>	Retrofit/Existing Homes	<mark>\$15</mark>	Contractor Rebate
Minnesota Power	ENERGY STAR v.7 windows	Retrofit/Existing Homes	<mark>\$15</mark>	Homeowner Rebate
Otter Tail	ENERGY STAR v.7 windows	Retrofit/Existing Homes	<mark>\$25</mark>	Homeowner Rebate
Minnesota Energy Resources	FNFRGY STAR v 7 windows	New Homes and Retrofit/Existing	\$50 / \$75 LI	Homeowner Rebate

ENERGY STAR Homes v3.2: \$2,500 tax credit


ZERH: \$5,000 tax credit (SB2030 requires ZERH for buildings <20,000 sqft)

ENERGY STAR Most Efficient: \$600 tax credit / year, up to 30% of cost

Affordable Window Retrofit Options and Initiatives

Weatherization

Window Films

Shading Systems

Storm Windows & Insulating Panels

Window and Glazing Replacement

Deep Energy retrofit

Affordable Window Retrofit Campaign

https://www.energy.gov/

https://paws.energy/

THANK YOU

CONNECT WITH ME:

katherine.cort@pnnl.gov

ssylvestre@mncee.org

culp@birchpointconsulting.com

APPENDIX: MINNEAPOLIS STORM WINDOW PILOT TABULATED RESULTS

	Interior Storm (Single-Family Site 1)		Exterior Storm mfgr 2 (Multi-Family Site 1)	Exterior Storm mfgr 2 (Multi-Family Site 2)
Home Sq. Ft.	3792	3238	4290	1877
Window Count	25	31	55	29
Glazed sq. ft.	341	268	602	259
Pre CFM50	5162	3356	7857	4405
Post CFM50	4200	3026	6373	3692
Difference	962	330	1484	713
Percentage Reduction	18.6%	<mark>9.8%</mark>	18.9%	16.2%
cfm50 per Window	38	11	27	25
cfm50 per sq. ft. glazed area	2.8	<mark>1.2</mark>	<mark>2.5</mark>	2.8

